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Abstract
In the framework of non-relativistic quantum mechanics and with the help
of Green’s functions formalism, we study the behaviour of weakly bound
states in a non-central two-particle potential as they approach the continuum
threshold. Through estimating Green’s function for positive potentials we
derive rigorously the upper bound on the wavefunction, which helps us to
control its falloff. In particular, we prove that for potentials whose repulsive
part decays slower than 1/r2 the bound states approaching the threshold do
not spread and eventually become bound states at the threshold. This means
that such systems never reach supersizes, which would extend far beyond the
effective range of attraction. The method presented here is applicable in the
many-body case.

PACS numbers: 03.65.Db, 31.15.Ar

1. Introduction

In many problems of quantum mechanics, it is important to know what happens to the
wavefunction of a system as the bound state approaches the dissociation (decay) threshold. In
particular, how does the size of the system in the ground-state change as the system becomes
loosely bound. Among multiple examples of loosely bound systems in physics, one could
mention negative atomic and molecular ions [1], Efimov states [2] and halo nuclei [3, 5].

For a bound state of the system as it approaches the threshold, there could be two
possibilities. The first one is that the probability distribution given by this bound-state spreads,
meaning that the probability to find all particles together in the fixed bounded region of space
goes to zero (the size of the system goes to infinity). One observes such spreading in helium
dimer [4] or in halo nuclei like 6He or 11Li, which are so loosely bound that two neutrons are
about to leave the system and form dilute nuclear matter around the core nucleus (4He and 9Li
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Figure 1. Sketched behaviour of the ground-state wavefunctions approaching the threshold in two
potentials. Left: the potential has a positive Coulomb tail. Right: the same potential is cut off at
some distance Rc .

respectively) [3]. The second possibility is that the bound state does not spread and in this case
it eventually becomes a bound state at the threshold (the size of the system remains finite).
This phenomenon is called the eigenvalue absorption. This is the case for doubly negative
ions and proton halos [1, 5].

Recall, that for two particles interacting through spherically symmetric potentials with
finite range S-states always spread, while all states with nonzero angular momentum become
bound [6]. Incidentally, it is natural to conjecture that the ground state of a multi-particle
system with pair interactions of finite range (Vij (x) = 0 for |x| � R) cannot be bound
at the threshold given that the particles are either bosons or distinguishable. For fermions
with short-range interactions, it is hard to say from general principles whether the ground
state would spread or not. The physical approach in this case is to use some kind of shell
model and to figure out if there is a centrifugal barrier, which prevents the wavefunction from
spreading.

On the other hand, there are potentials, for which bound states do not spread at all
and when approaching the continuum they give rise to bound states exactly at the threshold
[7, 8]. In particular, the physically important case of repulsive Coulomb tail case belongs
to this type (see the discussion in [9]). Let us illustrate this situation by a simple example.
Consider the square well potential plus a repulsive Coulomb tail, as in figure 1 (left), and
imagine the ground state in this potential as it approaches the threshold. The probability
distribution for this state would remain a confined wave packet regardless of how small is the
binding energy. For zero binding energy there would be a bound state, which would have a
falloff of the type ∼ exp(−√

r). In contrast, if we cut off the positive tail at some arbitrary
distance Rc, the ground state approaching the threshold would eventually spread when the
binding energy is sufficiently small, i.e. the probability to find the particle in some bounded
region of space goes to zero with the binding energy. The state ‘tunnels’ through the barrier.
Note that this change in the behaviour does not depend on the value of Rc, which can be made
as large as we please, so this effect is solely due to the repulsive Coulomb tail.

A rigorous proof of the eigenvalue absorption in the case of a general short-range potential
plus a repulsive Coulomb tail was given by Bolle, Gesztesy and Schweiger in [8]. The main
idea in [8] is to derive upper bound on the resolvent of the operator H = p2 + 1/r . This
upper bound helps then to control the falloff of wavefunctions. However, the approach in [8],
based on Green’s function expansion, is aimed specifically at the Coulomb long-range part
and does not allow for generalizations, for example, to potentials having long-range parts of
the form r−1 + Ar−2, which may arise in multipole expansions. In this paper, we show how
one can easily derive upper and lower bounds on such resolvents (Green’s functions) and this
allows us to derive more general results on the eigenvalue absorption. In [8] the zero energy
bound state is first constructed as a solution in the sense of distributions and then using the
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upper bound on the resolvent one shows that this solution is a true L2 bound state belonging
to the domain of the Hamiltonian. Here, we rather use the coupling constant of the interaction
to propagate true bound states to the zero energy level and by controlling their falloff we can
tell whether they become zero energy bound states or only resonances. This treatment of zero
energy states is more physical in the sense that one can follow the behaviour of wavefunctions
as they approach the continuum.

The analysis in [7] illuminates the possibilities for various radially dependent long-range
parts. However, the arguments given there are not rigorous. Finally, we should mention, that
the phenomenon of the ground-state absorption was proved rigorously in [10] for a 3-body
system with pure Coulomb interactions and the infinitely massive core. This makes one
conjecture that at the point of critical charge negative ions have bound states at the threshold,
see the discussion in [1]. In a forthcoming article, we shall give the rigorous proof of this
conjecture for distinguishable particles and bosons [11], see also the discussion concerning
many-body systems in the last section.

The paper is organized as follows. In section 2, we set the criterion for the eigenvalue
absorption. In section 3, we derive useful upper bounds for Green’s function. These bounds
can also be used to control numerical solutions. In section 4, we prove our main result saying
that potentials decaying slower than 1/r2 give rise to bound states at the threshold. The last
section presents conclusions and a short discussion concerning many-body systems. Finally,
the appendix contains technical details necessary for the proof in section 2.

2. Bound states near threshold

In nature, we can make the bound state of the system approach the threshold by changing the
number and the type of particles. In theory, we reproduce this behaviour changing continuously
some parameters in the system. For example, in the case of ions diminishing the atomic charge
Z down to the critical value Z = Zcr makes the ground state approach the threshold [1]. Here,
as the parameter whose change forces the states to approach the threshold, we take the coupling
constant of the interaction.

In our analysis, we shall consider the Hamiltonian of two particles H = H0 + λW , where
H0 = p2 is the free Hamiltonian (we use the units where h̄ = 1 and m = 1/2), W is the
interaction and λ is a coupling constant. By decreasing λ we can lift any bound state to the
continuum. For convenience we shall consider only W ∈ L2(R3) + L∞(R3) [12]. This is a
large class of interactions, which allows singularities not worse than r−α for α < 3/2. In this
case H is self-adjoint on the domain D(H0) = D(−�) [12]. However, one could extend our
results to potentials having singularities of the type r−α for α < 2.

Let us assume that there is a bound state having the energy E(λ) < 0 for some value
of the coupling constant λ. E(λ) increases monotonously when λ decreases and eventually
E(λ) becomes zero for λ = λcr, where λcr is called the critical coupling constant [6]. In
the following, we show, using a simple example, how the wavefunction spreads in the case
of exponentially decaying potentials. In this simple case, the analyticity of the energy as a
function of λ helps us to establish an upper bound on the wavefunction

Theorem 1. If there exist A, a > 0 such that |W | � A e−a|x| and at λ = λcr there is no
zero-energy bound state then the following upper bound holds for the normalized bound state
ψ having the energy E(λ) in the neighbourhood of E(λcr) = 0

|ψ | � C|E|1/4 e−√|E|r

r
, (1)

where C > 0 is some constant independent of E.
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Proof. ψ satisfies the integral equation ψ = −λ[H0 − E]−1Wψ , which could be rewritten as

ψ(x) = −λ

∫
dy

e−√|E||x−y|W(y)ψ(y)

4π |x − y| . (2)

Using |W | � A e−a|x| and applying the Schwarz inequality to equation (2) gives us

|ψ | � λ〈ψ ||W ||ψ〉1/2

[∫
dy

A e−a|y| e−2
√|E||x−y|

|x − y|2
]1/2

� λ〈ψ ||W ||ψ〉1/2 C ′ e−√|E|r

r
(3)

where C ′ is some constant and r = |x|. On the other hand, recall [6] that at λ = λcr the energy
E(λ) is analytic and can be expanded into convergent power series E(λ) = ∑∞

k=2 ak(λ−λcr)
k ,

where a2 < 0 (a1 = 0 because by condition there is no zero-energy bound state at
λ = λcr). Applying the Hellman–Feynman theorem 〈ψ |H0|ψ〉 = E(λ) − λ dE/dλ gives
us 〈ψ |H0|ψ〉/|E|1/2 = O(1). Because |W | � A e−a|x| there must exist such constant L that
|W | � L(2r)−2 and thus by the uncertainty principle [12, 13] 〈φ||W ||φ〉 � L〈φ|H0|φ〉 for
any φ ∈ D(H0). Thus 〈ψ ||W ||ψ〉/|E|1/2 = O(1), which together with equation (3) proves
the statement. �

As one can easily see, the function on the right-hand side of equation (1) dominates the
wavefunction and spreads as E → 0 maintaining the constant norm independent of E. The
probability to find the particle in some fixed region of space goes to zero.

Now, let us consider potentials with positive tails. Throughout the paper, we shall assume
for such potentials that W(x) � 0 for |x| � R0, i.e., that outside some sphere the positive part
dominates. Below we present a simple criterion, which tells us when bound states become
bound states at the threshold. From the discussion above and from theorem 1 it is clear that
the strategy could be proving that as λ ↘ λcr bound states remain confined in some region of
space, i.e. do not spread. One way to achieve this is to show that bound states are dominated
by some fixed function g ∈ L2.

Theorem 2. Let λn be a sequence of coupling constants and λn ↘ λcr. The following is true
(a) if for each λn there is a bound state φn with the energy En such that |φn| � g, where g ∈ L2

and En → 0 then there exists a normalized bound state at the threshold, that is φ0 ∈ D(H)

and H(λcr)φ0 = 0. (b) If for each λn there are m orthogonal bound states φ(m)
n with the

energies E(m)
n such that |φ(m)

n | � g, where g ∈ L2 and limn→∞ E(m)
n = 0 then there exist m

orthonormal bound states at the threshold.

The proof of this theorem, which follows the method in [14], is given in the appendix.
Intuitively, this proposition is obvious. If the states do not spread they should finally form some
bound state at the threshold. A similar theorem concerning many-body systems appeared in
Zhislin and Zhizhenkova [15]. There the authors proved that if a minimizing sequence for the
energy functionals does not spread, then there exists a minimizer in L2. Their result could be
explained from the practitioner’s point of view. Imagine that the system has no bound states
with negative energy. Then, if the function minimizing the energy functional does not go to
zero as the number of basis functions increases, then there must exist a zero-energy bound
state.

Now let us see how the criterion in theorem 2 works. First, we separate positive
and negative parts of the potential W = W+ − W−, where W+ = max(0,W) and
W− = max(0,−W) and W± � 0. The equation for the bound states reads H(λ)φ = −k2φ,
where k → 0 as λ → λcr. This can be rewritten as

(H0 + k2 + λW+)φ = λW−φ (4)
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or equivalently

φ = λ(H0 + k2 + λW+)
−1W−φ. (5)

The operator (H0 + k2 + λW+)
−1 is an integral operator, whose kernel is positive and real

[17]. Thus we can rewrite equation (5) as

|φ| � 2λcr(H0 + k2 + λW+)
−1W−|φ|, (6)

where because λ ↘ λcr we have taken λ � 2λcr without loss of generality. If we show
that the right-hand side of equation (6) is bounded by some fixed square integrable function,
then according to theorem 2 we would have bound states at the threshold. The operator
(H0 + k2 + λW+)

−1 is an integral operator, and its kernel is Green’s function having two
arguments. Because the function W−|φ| vanishes outside some sphere, the behaviour of |φ| at
infinity is determined by the asymptotic of Green’s function when the integration argument is
fixed within the sphere. Thus to find the asymptotic we need to derive upper and lower bounds
on Green’s function.

3. Bounds on Green’s functions

3.1. Potential tails decaying as 1/r2

3.1.1. Upper bound. We introduce the function which would play the role of potential’s tail:

η(A,R0; x) =
{

0 if r < R0

Ar−2 if r � R0,
. (7)

We are interested in the kernel of the integral operator [H0 +k2 +η(A,R0; x)]−1 for k real,
which we denote as Gk(A,R0; x, y). Note that the kernel of such an operator is a positive
function, continuous away from x = y [17]. Our aim in this section is to find an upper bound
on Gk(A,R0; x, y). For that we need the following lemma.

Lemma 1. Let G1,2(x, y) denote the integral kernels of [H0 + k2 + V1,2]−1 and suppose
V1(x) � V2(x). Then G2(x, y) � G1(x, y).

Proof. Through the integral representation we get

G2(x, y) = G1(x, y) −
∫

dy ′G1(x, y ′)[V2(y
′) − V1(y

′)]G2(y
′, y). (8)

Equation (8) is the kernel representation of the equation (A + B)−1 = A−1 −A−1B(A + B)−1,
where A = H0 + k2 + V1 and B = V2 − V1. Now, because G1,2(x, y) are positive [17] and the
potential difference V2 − V1 is non-negative, the integral in equation (8) must be non-negative
and the statement is proved. �

There is another elucidating and more direct way to prove lemma 1. The proposition of
the Lemma follows from the Laplace transform and the Trotter product formula, which lie at
the heart of path-integrals [12]:

(H0 + k2 + V1)
−1 =

∫ ∞

0
e−k2t e−t (H0+V1) dt (9)

e−t (H0+V1) = s- lim
m→∞[e−tH0/m e−tV1/m]m. (10)

Because e−tH0 in equation (10) has a positive kernel, namely (4πt)−3/2 e−|x−y|2/4t , the kernel
of the operator on the left in equation (10) becomes smaller when V1 is replaced by V2.
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The idea behind the upper bound on Green’s function is rather simple. Suppose we have
found such a function F(A,R0, x), independent of k, so that Gk(A,R0; x, 0) � F(A,R0; x)

holds for all k and x. First, we shall derive the upper bound in terms of the function F, and
then we shall determine F explicitly.

Let us fix the functions Ã(s), R̃0(s) so that the following inequality holds

η(A,R0; x) � η(Ã, R̃0; x − s), (11)

where s is some fixed three-dimensional vector. From simple geometric arguments it follows
that equation (11) would be satisfied if Ã(s), R̃0(s) satisfy the inequalities:

R̃0(s) � R0 + |s| (12)

Ã(s) � A
R̃2

0

(R̃0 + |s|)2
. (13)

Let us mention that the closer Ã is to A the better is the asymptotic behaviour of the bound;
hence, it is reasonable to take R̃0 large.

Translating the arguments one finds that Gk(Ã, R̃0; x − s, y − s) is the integral kernel of
the operator [H0 + k2 + η(Ã, R̃0; x − s)]−1. Now, using equation (11) and lemma 1 we obtain
the upper bound

Gk(A,R0; x, y) � Gk(Ã, R̃0; x − s, y − s). (14)

Equation (14) is valid for all s, so we can put s = y, which gives us

Gk(A,R0; x, y) � F(Ã(y), R̃0(y); x − y). (15)

It remains to find F, which is the upper bound on Gk(A,R0; x, 0). This is easy because
Gk(A,R0; x, 0) is spherically symmetric in x. From now on for simplicity of notation we shall
drop A,R0 in the arguments, writing, for example, F(x) instead of F(A,R0; x). First, we
shall give a formal solution, then we shall prove that this solution is indeed correct. By
lemma 1 Gk(x, 0) � Gk′(x, 0) if k′ � k, so we can take F(x) = limk→0 Gk(x, 0).
Because Gk(x, 0) is continuous away from x = 0 [17] and the functions Gk(x, 0)

increase monotonically when k → 0, the pointwise limit makes sense. By lemma 1
Gk(x, 0) � G

(0)
k (x, 0), where G

(0)
k (x, y) = (4π |x − y|)−1 exp (−k|x − y|) is the free

propagator, i.e. the integral kernel of the operator [H0 + k2]−1. This means F(x) is bounded
away from x = 0 and F(x) � (4πr)−1. Because Gk(x, y), formally satisfies the equation
[H0 + k2 + η]Gk(x, y) = δ(x − y) one expects that F(x) satisfies the equation

[H0 + η]F = δ(x). (16)

To find the solution of equation (16) we set

F = 1

4πr
×

{
1 + br if r � R0

cr−a if r � R0,
(17)

where a is the positive root of the equation a(a + 1) = A and the constants b, c are fixed
requiring, as usual, that F and its derivative are continuous at r = R0. This gives us

F(A,R0; r) = 1

4πr
×

{
1 − R−1

0 a(a + 1)−1r if r � R0

Ra
0 (1 + a)−1r−a if r � R0.

(18)

One can check that F(x) defined by equation (18) indeed satisfies equation (16).
For completeness we give the accurate proof, which justifies equation (18).
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Lemma 2. F(x) defined as F(x) = limk→0 Gk(x, 0) equals a.e. the expression given by
equation (18).

Proof. The integral equation for the resolvent reads [12]

Gk(x, y) = G
(0)
k (x, y) −

∫
dy ′G(0)

k (x, y ′)η(y ′)Gk(y
′, y). (19)

Substituting the expression for G
(0)
k (x, y) and setting y = 0 we obtain

Gk(x, 0) = e−kr

4πr
− 1

4π

∫
dy ′ e

−k|x−y ′ |

|x − y ′| η(y ′)Gk(y
′, 0). (20)

Applying limk→0 to both sides of equation (20) gives us the integral equation

F(x) = 1

4πr
− 1

4π

∫
dy ′ η(y ′)

|x − y ′|F(y ′). (21)

By simple substitution and calculating the integrals one can check that F given by equation (18)
indeed solves the integral equation equation (21). It remains to prove that no other solution
exists. Suppose there are two solutions and denote their difference Z = F1 − F2. Then Z
satisfies the integral equation:

Z(x) = − 1

4π

∫
dy ′ 1

|x − y ′|η(y ′)Z(y ′). (22)

We need to show that Z = 0 a.e. Let Z̃ = η1/2Z, then Z̃ ∈ L2 by the dominated convergence
theorem and ‖Z̃‖ �= 0, because otherwise from equation (22) it follows Z = 0 and we are
done. From equation (22) we obtain∫

dx dy
η1/2(x)Z̃(x)η1/2(y)Z̃(y)

|x − y| = −‖Z̃‖2 < 0. (23)

But equation (23) cannot hold because |x − y|−1 is the kernel of a strictly positive operator
(this could be easily checked in the Fourier-transformed space). This means equation (22)
holds only if Z = 0. �

Now let us formulate the bound in the form required in section 4.

Corollary 1. Let A > 3/4, then there exist C > 0, δ > 0 and R such that for |y| � R0 and
|x| � R the inequality holds Gk(A,R0; x, y) � C|x|−3/2−δ .

Proof. For |y| � R0 we can fix the values R̃0 and Ã independently of y. Both inequalities
(12) and 13) would be satisfied if R̃0 � 2R0 and Ã � AR̃2

0(R̃0 + R0)
−2. When R̃0 becomes

large Ã gets closer to A, so we can fix the values of R̃0 and Ã to ensure that the following
inequality holds 3/4 < Ã < A. If we set R = R̃0 + R0, then for |y| � R0 and |x| � R we
have |x − y| � R̃0 and from equations (15) and (18), we get

Gk(A,R0; x, y) � (4π |x|)−1R̃ã
0(1 + ã)−1|x − y|−ã � C|x|−1−ã , (24)

where ã is the positive root of the equation ã(ã + 1) = Ã, ã > 1/2. �
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3.1.2. Lower bound. Here, we shall briefly discuss how the same method can be applied
to the construction of lower bounds. We shall need this in section 4 where we show that
the ground state of potentials decaying faster than (3/4)r−2 spreads near the point of critical
binding. For that we need the following type of potential

ξ(A,R0, ; x) =
{
V0 if r < R0

Ar−2 if r � R0,
(25)

and we need the upper bound for Green’s function of the operator 
k(A,R0) =
[H0 + ξ + k2]−1, which has the integral kernel 
k(A,R0; x, y). We shall derive the lower
bound in terms of the function fk(A,R0; r) = 
k(A,R0; x, 0), which falls off at infinity and
solves the following equation

[H0 + ξ + k2]fk = δ(x) (26)

where fk depends only on r = |x| (because the potential is spherically symmetric) and is
a continuous function away from r = 0. By definition of fk we have 0 < fk � 1/(4πr).
Setting fk = (4πr)−1f̂ k from equation (26) we obtain the equation on f̂ k

−f̂ ′′
k + ξ f̂ k + k2f̂ k = 0 (27)

with the boundary conditions f̂ k(0) = 1 and f̂ k(∞) = 0. The function 0 < f̂ k(r) � 1 comes
out as a solution of a simple radial equation and thus can easily be calculated. As usual, one
calculates the solutions f̂ k (r < R0) and f̂ k (r > R0) and determines the constants so that f̂ k

and its derivative are continuous at R0. The following lemma is useful for the lower bound.

Lemma 3. For r � R0 there exists C0 independent of k such that

f̂ k(r) � C0 e−kr r−a. (28)

Proof. According to equation (27) on the interval [R0,∞] the function f̂ k satisfies the
equation:

−f̂ ′′
k + Ar−2f̂ k + k2f̂ k = 0. (29)

Let us set f̂ k(r) = gk(r) e−kr r−a . Then for gk(r) on the interval [R0,∞] the equation becomes

−g′′
k + 2(ar−1 + k)g′

k = 2akr−1gk. (30)

Because fk is positive, gk should be also positive. Hence from equation (30) we get

g′′
k � 2(ar−1 + k)g′

k. (31)

We want to show that g′
k � 0. Indeed, if in contrast g′

k(y) < 0 at some point y, then at this
point due to equation (31) g′′

k (y) < 0. Hence g′ is a monotonically decreasing function for
r � y. Thus from equation (31) we conclude that g′′

k � 2kg′
k(y) for all r > y, i.e. the second

derivative is less than a fixed negative value, which means that at some point gk becomes
negative. Hence the assumption was false and g′

k � 0 holds. On the other hand, fk > 0
and as k → 0 the function fk monotonically increases at all points. Hence, there must exist
C0 > 0 such that gk(R0) � C0. Together with g′

k � 0 this means that gk stays above C0 and
equation (28) holds. �

Now we follow the above procedure and define Ã, R̃0 as satisfying the inequality

ξ(Ã, R̃0, ; x − s) � ξ(A,R0, ; x). (32)

By geometrical arguments Ã, R̃0 must satisfy

R̃0(s) � R0 + |s| (33)
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Ã(s) � A
R̃2

0

(R̃0 + |s|)2
. (34)

Just as in the previous subsection through equation (32) we obtain the desired lower bound


k(A,R0; x, y) � 
k(Ã, R̃0; x − y, 0) = fk(Ã, R̃0; |x − y|). (35)

Now suppose A < 3/4. Looking at equations (33)–(34) one can see that we can fix R̃0 and
Ã so that Ã < 3/4 and equations (33)–(34) are valid. Then from equation (35) and lemma 3
it is clear that there exists a constant C > 0 such that for |x| � 2R̃0 and for |y| � R0 the
following inequality holds


k(A,R0; x, y) � fk(Ã, R̃0; |x − y|) � C e−k|x||x|−3/2. (36)

We would need inequality equation (36) in section 4.

3.2. Potential tails decaying as 1/r

Here, we would like to apply the results of the previous section to potentials with positive
Coulomb tails. This helps us to establish the decay properties of eigenfunctions lying at the
threshold. We shall not present a detailed exposition, because everything is similar to the
previous section. One can follow the steps of the previous section and derive the bound in
terms of the solution of the equation [H0 + η′]F = δ(r), where η′ is the Coulomb tail. This
however could not be expressed through elementary functions, so we shall make a couple of
simplifying approximations. We shall consider the following potential tail:

ζ(a, R0; x) =
{

0 if r < R0

(a2/4)r−1 + (a/4)r−3/2 if r � R0.
(37)

The repulsive Coulomb tail dominates in the potential of equation (37) and one can choose
the constants so that the actual Coulomb tail is greater than the function in equation (37). Let
Gc

k(a, R0; x, y) be the integral kernel of the operator [H0 + k2 + ζ(a, R0; x)]−1, where c stands
for Coulomb. The rest follows as above.

Let us fix the functions ã(s), R̃0(s) so that the following inequality holds

ζ(a, R0; x) � ζ(ã, R̃0; x − s). (38)

Again from geometric arguments it follows that equation (38) would be satisfied if ã(s), R̃0(s)

satisfy the inequalities

R̃0(s) � R0 + |s| (39)

ã(s) � a

(
R̃0

R̃0 + |s|
)3/2

. (40)

Again let us define Fc(x) = limk→0 Gc
k(x, 0), which makes Fc(x) satisfy the equation

[H0 + ζ ]Fc = δ(x). (41)

As one can easily check, the solution of equation (41) is given by

Fc(A,R0; r) = 1

4πr
×




1 − 1

R0 + 2
√

R0/a
r if r � R0

ea
√

R0

1 + (a/2)
√

R0
e−a

√
r if r � R0.

(42)
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Finally, the upper bound reads

Gc
k(a, R0; x, y) � Fc(ã(y), R̃0(y); x − y), (43)

where ã and R̃0 satisfy equations (39)–(40). As in corollary 1 from equation (43), we find that
there exists such R > 0 and C > 0 that

Gc
k(a, R0; x, y) � C e−a

√|x| if |y| � R0 and |x| � R. (44)

As we have mentioned for potentials with positive tails the asymptotic of Green’s function
determines the fall-off behaviour of bound-state wavefunctions. Hence the bound-state
wavefunctions fall off at least as fast as e−a

√
r . Calculating in the same way the lower

bound one finds that this is the actual fall-off.

4. Main result

Now we state the main result of this paper.

Theorem 3. If there are R0 and A > 3/4 such that λW+ � η(A,R0; x) then at λ = λcr all
states that hit the threshold at λ = λcr become zero energy bound states.

Proof. Let us define Gk(A,R0; x, y) the positive integral kernel of the operator
[H0 + k2 + η]−1. Then from equation (6) and by lemma 1 we get the bound

|φ|(x) � 2λcr

∫
|y|�R0

dyGk(A,R0; x, y)W−(y)|φ|(y), (45)

where we have used that W−(y) = 0 for |y| � R0. Now we shall use the upper bounds on
Green’s function Gk(A,R0; x, y) derived in section 3. For |x| � R we can use corollary 1 to
obtain from equation (45):

|φ|(x) � 2λcrC|x|−3/2−δ

∫
|y|�R0

dyW−(y)|φ|(y) � C1|x|−3/2−δ ≡ g>(x), (46)

where we have applied the Schwarz inequality and used W ∈ L2 + L∞. For |x| � R we can
use Gk(A,R0; x, y) � (4π)−1|x − y|−1 to obtain from equation (45):

|φ|(x) � 2λcr(4π)−1
∫

|y|�R0

dy|x − y|−1W−(y)|φ|(y)

� C2

[∫
|y|�R0

dy|x − y|−2W 2
−(y)

]1/2

≡ g<(x). (47)

Thus, we get |φ|(x) � g(x), where g(x) = g<(x) for |x| � R and g(x) = g>(x) for |x| > R.
Because g(x) ∈ L2 theorem 2 applies and the theorem is proved. �

Theorem 3 shows that all states in potentials whose repulsive part decays slower than
(3/4)r−2 become zero energy bound states at critical coupling. The following theorem is also
true.

Theorem 4. If there exists R0 such that

W(x) � (3/4)|x|−2 for |x| � R0 (48)

then the ground state cannot be a zero energy bound state.

Proof. For simplicity we shall assume that there exists a constant V0 such that W+ � V0. A
proof by contradiction. Suppose that the ground state ψ0 exists. Then the equation for the
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bound state at the threshold can be written as [H0 + W+]ψ0 = W−ψ0. This is equivalent to the
equation [H0 + W+ + k2]ψ0 = W−ψ + k2ψ0, which in turn can be transformed into the integral
equation:

ψ0 = [H0 + W+ + k2]−1W−ψ0 + k2[H0 + W+ + k2]−1ψ0. (49)

The ground-state wavefunction is always nonnegative ψ0 � 0 [12]. Because W− � 0, ψ0 � 0
in equation (49) on the right-hand side we have a sum of two positive terms (the operator
[H0 + W+ + k2]−1 has a positive integral kernel). Hence, we must have

‖[H0 + W+ + k2]−1W−ψ0‖ � 1 (50)

for all k. Because the positive part of W is bounded we have W+ � ξ(A,R0; x), where ξ is
defined by equation (25).

From equation (50) and using lemma 1, we conclude ‖
k(A,R0)W−ψ0‖ � 1 for all k,
where 
k(A,R0) = [H0 + ξ + k2]−1. Our aim is to prove limk→0 ‖
k(A,R0)W−ψ0‖ = ∞
thus obtaining the desired contradiction. We shall use the lower bound on 
k(A,R0; x, y)

from section 3.1.2. Let us fix R̃0 as in the last part of section 3.1.2. Then using the bound
equation (36) we obtain for the square of the norm

‖
kW−ψ0‖2 �
∫

|y1|�R0

∫
|y2|�R0

dy1 dy2W−(y1)ψ0(y1)W−(y2)ψ0(y2) (51)

×
∫

|x|�2R̃0

dx
k(A,R0; x, y1)
k(A,R0; x, y2) (52)

� M2C2
∫

|x|�2R̃0

dx|x|−3 e−2k|x| (53)

where M = ∫
|y|�R0

dyW−(y)ψ0(y) is some fixed constant. Note that M �= 0 because that
would mean ψ0 = 0. It is clear that the right-hand side in equation (53) becomes infinitely
large as k → 0 and thus ‖
k(A,R0)W−ψ0‖ � 1 cannot hold for small k. �

Finally, let us mention how the method can be generalized to potentials in the class
W+ ∈ R + L∞ and W− ∈ R ∩ L1, where R denotes the Rollnik class [12, 18]. In this case
the Hamiltonian is defined as a quadratic form and the singularities of the type r−α , where
α < 2, are allowed. The statements of theorems 3 and 2 remain unchanged in this case.
Only the proof of theorem 3 has to be slightly modified. Namely, in equations (46) and (47),
one uses the fact that 〈φ|W−|φ〉 is uniformly bounded (this is the consequence of W− being
form-bounded with respect to the kinetic energy with a relative bound zero).

5. Conclusions

We have proposed the method to derive lower and upper bounds on Green’s functions, which
helps us to determine the fall-off of bound states. Using these bounds we have proved that
potentials, whose tails decay as (2µ/h̄2)V > (3/4)r−2, where µ is the reduced mass, absorb
the eigenvalues, meaning that their bound states do not spread and become bound states at
the threshold. We have also found that ground states in potentials, whose tails decay as
(2µ/h̄2)V < (3/4)r−2, always spread as they approach the continuum.

These methods can be applied to the many-particle case, where it is still not known, for
which pair interactions between decaying particles or clusters the bound state would become
absorbed. The difficulty is that it is hard to control the asymptotic of the many-body bound-
state wavefunction. Using bounds on Green’s functions derived here one can demonstrate [11]



9014 D K Gridnev and M E Garcia

Figure 2. Typical stability diagram (sketch) for three Coulomb charges {−1, q1, q2}, the shaded
area representing stable systems. On the arcs of stability curve where either q1 > 1 or q2 > 1
there are bound states at the threshold.

that when there is a long-range Coulomb repulsion between decaying components (particles
or clusters), then the bound state must get absorbed.

Two types of behaviour, namely spreading and eigenvalue absorption can be perfectly
illustrated by a stability diagram for three Coulomb charges, see [19]. When masses are fixed
the diagram has the form as in figure 2. If we consider, for example, the upper arc, which
is the stability border, it has the following property [19]. Up to some nonzero value of q0

1
the stability border is given by the equation q2 = 1. Then at the point

{
q0

1 , 1
}

the arc goes
up. With the same method as here it can be proved [11] that if one approaches the stability
border from the side where q2 = 1 then the ground state spreads and there is no bound state at
the threshold. In contrast, for the points on the arc the ground state becomes absorbed, i.e. it
does not spread and becomes a bound state at the threshold. The reason is that on the stability
border, where q2 = 1 the system decays into a neutral cluster and one charged particle, and for
q2 > 1 both cluster and the particle are charged positively. The resulting Coulomb repulsion
between these objects hinders the spreading of the wavefunction and the ground state becomes
absorbed. Note that it has already been proved rigorously [10], that in the case of an infinite
core and two other masses being equal, the sharp point on the diagram, see figure 2, has a
bound state at the threshold. Our method helps to extend this result to many particles.
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Appendix. Proof of theorem 2

Proof. Let us prove part (a). We follow the argument from [14]. Because ‖φn‖ = 1 we can
extract a weakly converging subsequence (for which we reserve the same index n) such that
φn

w→ φ0, where φ0 ∈ L2. Because H is self-adjoint in order to prove that φ0 ∈ D(H) and
H(λcr)φ0 = 0 it is enough to show that for every f ∈ D(H) we have 〈H(λcr)f |φ0〉 = 0. The
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latter we obtain as follows:

〈H(λcr)f |φ0〉 = lim
n→∞〈H(λcr)f |φn〉 = lim

n→∞[〈H(λn)f |φn〉 − (λn − λcr)〈Wf |φn〉] (A.1)

= lim
n→∞〈f |H(λn)φn〉 = lim

n→∞ En〈f |φn〉 = 0. (A.2)

The only thing that remains to show is that φ0 �= 0. We shall prove this by contradiction
assuming that φn

w→ 0. Let us introduce χR , the characteristic function of the interval [0, R]
(i.e. χR(x) = 1 when |x| ∈ [0, R] and χR(x) = 0 otherwise). Because |φn| � g and g ∈ L2

we can fix R so that 〈φn|χR|φn〉 > 1/2. We would like to show that for φn
w→ 0 the condition

〈φn|χR|φn〉 > 1/2 cannot hold for large n. One way to do this is to use that
∫ |∇φn|2 dx � const

and apply the Rellich–Kondrashov lemma [16] giving χRφn → 0 strongly, or we can use the
argument similar to the one in [14]. Using the equation (H0 + 1)φn = (En + 1)φn −λnWφn we
get φn = (En + 1)(H0 + 1)−1φn − λn(H0 + 1)−1Wφn. Substituting this into 〈φn|χR|φn〉 > 1/2
we obtain

(En + 1)〈φn|χR(H0 + 1)−1φn〉 − λn〈φn|χR(H0 + 1)−1Wφn〉 > 1/2. (A.3)

The operators χR(H0 + 1)−1 and χR(H0 + 1)−1W have square integrable kernels and are
therefore compact. Acting on weakly convergent sequences they make them converge strongly
and hence both terms on the left-hand side of equation (A.3) go to zero. Thus equation (A.3)
cannot hold for large n, which proves (a).

Part (b) easily follows if we prove that from φn
w→ φ0 follows φn → φ0 in norm. Indeed,

for each λn there are bound states φ(i)
n (i = 1, . . . , m) satisfying H(λn)φ

(i)
n = E(i)

n φ(i)
n .

Moreover
〈
φ(i)

n

∣∣φ(k)
n

〉 = δik and as λn ↘ λcr the energies go to zero E(i)
n → 0. In this case

since
∣∣φ(i)

n

∣∣ < g ∈ L2 there are m bound states at the threshold, φ(i)
n

w→ φ
(i)
0 . Because this

convergence is in norm
〈
φ

(i)
0

∣∣φ(k)
0

〉 = δik holds.

To prove that from φn
w→ φ0 follows φn → φ0 in norm let us define ξn = φn − φ0, then

ξn
w→ 0 and we would like to show that ‖ξn‖ → 0. A proof by contradiction. If not then

there must exist a constant a > 0 and a subsequence (for which we again reserve the same
index n) such that ‖ξn‖2 > a. Again because |φn| � g and φ0 ∈ L2 we can fix R so that
〈ξn|χR|ξn〉 > a/2. We have ξn ∈ D(H) and (H0 + λnW)ξn = Enφn + (λcr − λn)Wφ0. From
this equation we easily get

ξn = (H0 + 1)−1ξn − λn(H0 + 1)−1Wξn + En(H0 + 1)−1φn + (λcr − λn)(H0 + 1)−1Wφ0.

(A.4)

Substituting one ξn from equation (A.4) into (ξn, χRξn) and using that χR(H0 + 1)−1

and χR(H0 + 1)−1W are compact and ξn
w→ 0 we obtain 〈ξn|χR|ξn〉 → 0. This is a

contradiction. �
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